Wiley Corporate Logo

Top Navigation

Climate Change and Species Range Shifts

climate change and species range shiftResearch indicates that the global climate is rapidly changing, effecting patterns of temperature and precipitation at many geographical scales and that these changes are being caused by human activity. Since future rates of climate change may be greater than those that occurred over the evolutionary history of many terrestrial species, there is an increased need for studies on the evolutionary potential of species to adapt to new environments and an understanding of the traits that are likely to respond. Research questions that arise from this are challenging to answer due to the diversity of disciplines that inform them, including quantitative and molecular genetics, eco-physiology, mathematical modelling, climate science, biogeography as well as community and ecosystem ecology. In climate change research, it is important as well to incorporate an evolutionary perspective and acknowledge that traits are likely to vary throughout a species range and move beyond climate and climate alone as the primary driver of species range shifts. For most species the potential for adaptive evolution in functional traits has been largely overlooked by models that focus instead on niche conservatism and bioclimate envelopes to predict future species ranges.

The implications are that future climate changes have the potential to greatly modify species ranges and/or alter the ability of plants to adapt to future changes .The study of genetic divergence along ecological gradients is fundamental to understanding adaptive evolution and diversification. While much research has focused on the evolutionary diversification of species, there is little understanding of how evolutionary dynamics may impact contemporary ecological interactions or ecosystem processes. Evolution has generally been taught and thought of as a slow process resulting from the accumulation of small genetic changes that may ultimately lead to genetic divergence and speciation. In fact, contemporary rapid evolution has resulted in changes to life-history traits, physiological traits, morphological traits, behavioural traits and even species interactions across many different species. This change in perspective is largely due to three points that are also fundamental to the argument for incorporating an evolutionary perspective into climate change research: rapid evolution is common, genetic divergence occurs along a variety of gradients, including those affected by global change, and genetic divergence in a variety of species can impact ongoing species interactions, community structure, biodiversity and ecosystem function.climate change affect species range shift

Species provide ecosystem services that support the foundation of life on this planet and many of the raw materials that drive global economies. Genetic variation within a species, as well as species’ interactions with other species, can impact the ecosystem services that species provide, so it is important to understand the effects of a variable climate on the geographical boundaries and trait variation of populations. We must develop a deeper perspective on how a rapidly changing environment may affect genetic variation, functional traits, species interactions and ultimately, the genetically based services those ecosystems provide. This Special Feature heralds a new direction in climate change research and broadens our perspectives on the consequences of gradients to eco-evolutionary dynamics in a changing world.

Read other articles come with free access from this special issue of Functional Ecology on the topic of climate change and species range shifts.

Share your thoughts on climate change and/or its affect on species range shifts in the comment section below. We would love to hear different opinion based on your experience and knowledge on the topic!

, ,

Comments are closed.